Modular Specifications: Constructions With Finite Colimits, Diagrams, Isomorphisms
نویسندگان
چکیده
Modular speciications: constructions with nite colimits, diagrams, isomorphisms Catherine ORIAT R esum e : La composition de sp eciications modulaires peut ^ etre mod elis ee, dans le forma-lisme des cat egories, par des colimites de diagrammes. Les sommes amalgam ees permettent en particulier de d ecrire l'assemblage de deux sp eciications qui ont une partie commune. Ce travail etend cette id ee classique selon trois axes. Tout d'abord, nous d eenissons un langage de termes pour repr esenter les sp eciications modulaires construites a l'aide de colimites sur une cat egorie de base. Formellement, ce langage est caract eris e par une cat egorie niment cocompl ete. Nous proposons ensuite d'associer a chaque terme un diagramme. Cette interpr etation permet de faire abstraction de certains choix eeectu es lors de la construction de la sp eciication modulaire. Nous d eenissons une cat egorie de diagrammes, qui est une compl etion de la cat egorie de base par colimites nies. Nous montrons que cette interpr etation d eenit une equivalence entre la cat egorie des termes et la cat egorie des diagrammes, ce qui montre la correction de l'interpr etation. Ennn, nous proposons un algorithme pour normaliser les diagrammes, dans le cas o u la cat egorie de base est squelettique, nie et sans cycle. Cela nous permet de d etecter des \iso-morphismes de construction" entre sp eciications modulaires, c'est-a-dire des isomorphismes qui ne d ependent pas de la s emantique des sp eciications de base, mais seulement de leur assemblage. Abstract: The composition of modular speciications can be modeled, in a category the-oretic framework, by colimits of diagrams. Pushouts in particular describe the combination of two speciications sharing a common part. This work extends this classic idea along three lines. First, we deene a term language to represent modular speciications built with colimit constructions over a category of base speciications. This language is formally characterized by a nitely cocomplete category. Then, we propose to associate with each term a diagram. This interpretation provides us with a more abstract representation of modular speciications because irrelevant steps of the construction are eliminated. We deene a category of diagrams, which is a completion of the base category with nite colimits. We prove that the interpretation of terms as diagrams deenes an equivalence between the corresponding categories, which shows the correctness of this interpretation. At last, we propose an algorithm to normalize diagrams, …
منابع مشابه
Detecting Isomorphisms of Modular Specifications with Diagrams
We propose to detect isomorphisms of algebraic modular speci cations, by representing speci cations as diagrams over a category C0 of base speci cations and speci cation morphisms. We start with a formulation of modular speci cations as terms, which are interpreted as diagrams. This representation has the advantage of being more abstract, i.e. less dependent of one speci c construction than ter...
متن کاملA Language for Configuring Multi-level Specifications
This paper shows how systems can be built from their component parts with specified sharing. Its principle contribution is a modular language for configuring systems. A configuration is a description in the new language of how a system is constructed hierarchically from specifications of its component parts. Category theory has been used to represent the composition of specifications that share...
متن کاملSpecifications of Software Architectures using Diagrams of Constructions
Formal methods promise the ultimate quality of software artifacts with mathematical proof of their correctness. Algebraic specification is one of such methods, providing formal specifications of system components suitable for verification of correctness of all individual steps in the software development process, and hence of the entire development process and of the resulting program. In this ...
متن کاملUniversal Constructions for (Co)Relations: categories, monoidal categories, and props
Calculi of string diagrams are increasingly used to present the syntax and algebraic structure of various families of circuits, including signal flow graphs, electrical circuits and quantum processes. In many such approaches, the semantic interpretation for diagrams is given in terms of relations or corelations (generalised equivalence relations) of some kind. In this paper we show how semantic...
متن کاملCalculating Limits and Colimits in Pro-categories
We present some constructions of limits and colimits in pro-categories. These are critical tools in several applications. In particular, certain technical arguments concerning strict pro-maps are essential for a theorem about étale homotopy types. Also, we show that cofiltered limits in pro-categories commute with finite colimits.
متن کامل